Skip to contents

This function fits a model to the given measured data of a population.

Usage

growthfd(
  data,
  x,
  y,
  id,
  model,
  verbose = 1,
  bounds = "negative",
  filename = "",
  startFromId = NULL,
  parallel = F,
  scores.filename = "parallel.txt"
)

Arguments

data

Data frame containing age, height and id of individuals

x

Age at measured data points

y

Height at measured data points

id

Corresponding individual's id at measured data points

model

FPCA growth model to be fitted

verbose

Verbosity

bounds

Limitation of the interval for milestones estimation, 'negative' or 'inverse'

filename

File name for saving results after each individual

startFromId

Start the evaluation from this id

parallel

(Experimental) Parallel evaluation of the model fitting

scores.filename

File name for continuous saving of the scores

Value

List containing individuals id and model

Examples

filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
fit<-growthfd(data=d, x=x, y=y, id=id, model=model.bgs.m)
#> Model apv=13.740415, atf=11.090431
#> Processing individual with id 'John' (1/2), containing 18 measurements
#> It.    0, RSS =    1622.04, Par. =          0          0          0          0          0          0          0          0          0          0          0          0
#> It.    1, RSS =    18.1131, Par. =   -0.92853   0.590792 -0.0452606   0.629458   -0.52361    0.26631   -1.27108  -0.373017  -0.594539  -0.407316  -0.646637  -0.966524
#> It.    2, RSS =    12.9352, Par. =   -1.23456   0.460783 -0.0701897   0.196413  -0.300864    0.03997    -1.0801  -0.363923  -0.652776  -0.179065  -0.230554  0.0378657
#> It.    3, RSS =    12.8861, Par. =   -1.25334   0.458501   0.020703   0.123401  -0.280285  0.00272613   -1.07024  -0.359267  -0.689483  -0.221977 -0.0976082 -0.00740067
#> It.    4, RSS =    12.8853, Par. =   -1.25988   0.461212  0.0263142   0.113366  -0.275931  0.00162186   -1.06702  -0.363682  -0.696376  -0.216871 -0.0922423 -0.00318999
#> It.    5, RSS =    12.8853, Par. =   -1.25988   0.461215  0.0263632    0.11343  -0.275896  0.00377413   -1.06702  -0.363685  -0.696385  -0.216863 -0.0921115 -0.0028257
#> It.    6, RSS =    12.8853, Par. =   -1.25989   0.461225  0.0264735   0.113505  -0.275862  0.0028931   -1.06702  -0.363692  -0.696408  -0.216869 -0.0918255 -0.00305245
#> It.    7, RSS =    12.8853, Par. =    -1.2599   0.461231  0.0265137   0.113583  -0.275826  0.00184796   -1.06702  -0.363696  -0.696421  -0.216887 -0.0916078 -0.00300673
#> It.    8, RSS =    12.8853, Par. =    -1.2599   0.461233  0.0265305   0.113604  -0.275821  0.00233049   -1.06702  -0.363697  -0.696425   -0.21689 -0.0915695 -0.00281314
#> It.    9, RSS =    12.8853, Par. =    -1.2599   0.461233  0.0265305   0.113604  -0.275821  0.00233049   -1.06702  -0.363697  -0.696425   -0.21689 -0.0915695 -0.00281314
#> Processing individual with id 'Paul' (2/2), containing 11 measurements
#> It.    0, RSS =    244.688, Par. =          0          0          0          0          0          0          0          0          0          0          0          0
#> It.    1, RSS =     16.589, Par. =  -0.328057   0.686218    0.45778  -0.170158  -0.847792   0.228481  -0.640518  -0.562002  -0.161986  -0.579127  -0.190229   0.231424
#> It.    2, RSS =    16.0412, Par. =  -0.490699   0.903307   0.413326  -0.157529  -0.765587   0.209984  -0.584074  -0.848742   -0.26959  -0.451951  0.0151945 -0.0261874
#> It.    3, RSS =    16.0053, Par. =   -0.49888   0.979968   0.389935  -0.144722  -0.750883   0.214861  -0.597127  -0.916197   -0.30158  -0.406239  0.0743616 -0.0806142
#> It.    4, RSS =    16.0028, Par. =  -0.499582    1.00125     0.3889  -0.140481  -0.747863   0.216019  -0.600498  -0.935129  -0.304353  -0.391568  0.0895829  -0.094349
#> It.    5, RSS =    16.0027, Par. =  -0.499829    1.00729    0.38813  -0.139788   -0.74675    0.21633  -0.601462  -0.940439  -0.305399  -0.387886  0.0912642 -0.0981778
#> It.    6, RSS =    16.0026, Par. =  -0.499806    1.00894   0.387941  -0.139416  -0.746537   0.216093  -0.601778  -0.941769  -0.305667  -0.386679  0.0916887  -0.100214
#> It.    7, RSS =    16.0026, Par. =  -0.499749    1.00955   0.388153  -0.139246  -0.746324   0.216411  -0.601852  -0.942323  -0.305415  -0.386094  0.0933618   -0.10029
#> It.    8, RSS =    16.0026, Par. =  -0.499749    1.00955   0.388153  -0.139246  -0.746324   0.216411  -0.601852  -0.942323  -0.305415  -0.386094  0.0933618   -0.10029
#> Fitting time:
#>    user  system elapsed 
#>  152.23    8.56  160.84 
#> Warped apv=14.796922, atf=12.409030
#> Refined apv=14.616361, atf=12.327334
#> Warped apv=14.139222, atf=11.855192
#> Refined apv=13.890756, atf=11.820839
#> Total time:
#>    user  system elapsed 
#>  162.67    9.15  171.89